PHYSICAL REVIEW E

VOLUME 48, NUMBER 5

NOVEMBER 1993

Directed polymers with random interaction: An exactly solvable case

Sutapa Mukherji* and Somendra M. Bhattacharjeet
Institute of Physics, Bhubaneswar 751 005, India
(Received 20 November 1992)

We propose a model for two (d+1)-dimensional directed polymers subjected to a mutual §-function
interaction with a random coupling constant and present an exact renormalization-group study for
this system. The exact 8 function, evaluated through an € (= 1 — d) expansion for second and third
moments of the partition function, exhibits the marginal relevance of the disorder at d = 1 and the
presence of a phase transition from a weak- to strong-disorder regime for d > 1. The length-scale
exponent for the critical point is v = (2]¢|)™'. We give details of the renormalization. We show that
higher moments do not require any new interaction, and hence the 8 function remains the same for
all moments. The method is extended to multicritical systems involving an m-chain interaction. The
corresponding disorder-induced phase transition for d > d., = 1/(m — 1) has the critical exponent
Vm = [2d(m —1) —2] 7. For both the cases, an essential singularity appears for the length scale right
at the upper critical dimension d,,. We also discuss the strange behavior of an annealed system with
more than two chains with pairwise random interactions among each other.

PACS number(s): 64.60.Cn, 05.70.Jk, 36.20.—r, 64.60.Ak

I. INTRODUCTION

Attempts to study the effects of randomness, espe-
cially if one requires averages of thermodynamic quan-
tities, have led to many new techniques, concepts, and,
probably, controversies [1]. In order to get a clear idea
about random systems, in recent years, a directed poly-
mer (DP) in a random medium seems to have emerged
as the consensus candidate for the “simplest” random
model [2-6]. Here we propose a still simpler problem
of DP’s with random interaction that can be solved us-
ing an exact field-theoretic renormalization-group (RG)
approach [7]. This, we believe, is highly significant since
RG is the general framework to study and to understand,
through the fixed-point spectrum, the universal aspects
of any model.

Directed polymers in (d + 1) dimensions are random
walks directed along a particular direction, say z, with
fluctuations in the transverse d-dimensional space. DP’s
are of considerable interest and have attracted much at-
tention as a simple statistical-mechanical model because
of its relevance and applicability in unifying a wide va-
riety of seemingly disparate systems. These include the
flux lattice-melting problem in high-T,. superconductors
[8], commensurate-incommensurate transitions [9], wet-
ting transition [10, 11], vertex models [12], nematic poly-
mers [13], biomembrane phase transitions [14], interface
growth [15], etc. Many problems of conventional poly-
mers [self-avoiding walks (SAW’s)] such as collapse, ad-
sorption, etc. have exactly solvable counterpart in DP’s
[16]. The RG analysis of a pure system of interacting
DP’s gives enough insight through the evaluation of the
exact B function to all orders in perturbation series [17,
12, 18]. These systems of DP’s with pure short-range in-
teractions are almost completely solved and have led, for
example, to several exact results for vertex models [12,
19].
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There are many efforts and activities in the field of
polymers with random interaction [20] or in random me-
dia [21]. The analogous DP problems are expected to
be simpler. For example, a DP in a random medium,
which through a nonlinear mapping describes many as-
pects of interface growth, has been studied up to one loop
in the momentum-shell technique [15]. There also were
attempts for solving the many-chain system in a random
medium in the context of high-T, superconductivity [22].
It is the directedness that helps in setting up the DP
problem, both analytically and numerically, as oppposed
to the SAW problem in random media. Several results
for the DP problem are known in general, though exact
or rigorous results are rather few [3]. Apart from these
random-media problems, the other category of problems
involves polymers with random interactions in the con-
text of, say, disordered heteropolymers [20]. Here again,
a DP with random interaction turns out to be simpler
than ordinary polymers [23].

Our model [7] has a similarity to the second category
of problems. It deals with a random mutual interaction
among the chains with the randomness in the coupling
constant of the interaction. The randomness is only along
the length of the chains and does not depend on the trans-
verse d-dimensional coordinates. The specific character-
istic of the randomness as well as the directed nature of
the polymers enable us to solve the model exactly. Fur-
thermore, we show that this model, in spite of its sim-
plicity, captures many of the essential features such as
marginal relevance, existence of a disorder-induced phase
transition, etc. as known, e.g., for the interface-growth
problem, DP and SAW in random environments, etc. [4,
21]. The two-dimensional wetting phenomenon is also
analogous to our proposed system [11, 24], although our
model (and the solution) is for general d.

We define the model in the next section, and to put
things in the proper context, the aim and the outline of
the paper are given there.
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II. MODEL

From the definition of DP’s, it follows that a projec-
tion of a DP in the transverse d-dimensional space is an
ordinary polymer with z representing the contour vari-
able which is equivalent to the step length in a discrete
case. In the path-integral formulation the dimensionless
Hamiltonian for two such DP’s, each of length N, inter-
acting through a random mutual short-range interaction
can be written as [7]

S CONCD
N
+ / dz vy [1+b(2)] V(r12(2)),

where r;(z) is the d-dimensional position vector of a
point of chain 7 at a contour length z, and riz(z) =
ri(z) —rz2(z). The first term that comes from the chain
connectivity is the entropic contribution, and it corre-
sponds to free chains [25]. The second term is the two
chain interaction at the same chain length through a
short-range potential V(r). We introduce the random-
ness through the coupling constant. It has a pure part
vo and a random part vob(z), which varies only with z
(the length along the chain). It is chosen in this way so
that b(z) is dimensionless. At this stage, for generality,
we keep V as a short-range potential. Later on, specific
calculations would be done with a d-function potential.
Also, starting with a short-range potential has certain
mathematical advantages such as avoiding powers of dis-
tributions, as we will see below. One can also think of this
problem as a nonrelativistic quantum problem of parti-
cles with a time (z) -dependent interaction potential—a
description we do not find very illuminating.

One of the simplest but nontrivial choices for the dis-
tribution of the randomness is a Gaussian one:

P(b(2)) = (2n8)7Y/2 exp[-b(2)?/(24)],
(b(2)) =0, and (b(z1)b(z2)) = A 6(21 — 22).

(2.1)

(2.2a)
(2.2b)

Here the randomness is uncorrelated in nature and is de-
scribed by the variance A. Choosing a zero mean for b(z)
is not a restriction because any nonzero (b(z)) could be
made to vanish by adding it to (and thereby redefining)
the pure part.

So far we have discussed only two-body interactions.
For DP’s it is known that even pure many-body interac-
tions, representing special multicritical points, can also
be handled exactly [26,19,18]. It is possible to study the
disordered versions of these multicritical systems. The
Hamiltonian for the mth-order multicritical point, in-
volving only an m-body é-function interaction, is

-3 [ 3 (o)

+/ dz v [1+b(z
o

H 8(ri iv1(2)), (2.3)

where, as before, b(z) is the random part. We come back
to this multicritical situation in Sec. VI. It is also possible

to define more general systems by putting the lower-order
interactions in Eq. (2.3) with independent random cou-
pling constants. Such a Hamiltonian can, in principle,
describe the approach to the multicritical points. How-
ever, such complicated cases are not discussed here.

One possibility of getting a random interaction for, say,
the two-chain case is to take “charged” DP’s, with ran-
dom charges g;(z) for the ith chain, vob(z) = ¢1(2)g2(%2),
and interactions of charges only at the same z. If the
charges are in thermal equilibrium with the polymers,
a simple quadratic Hamiltonian for the charges can be
taken to be proportional to [b(z)? dz and it is to be
added to the Hamiltonian of Eq. (2.1). The partition
function one gets from this full Hamiltonian is really
equivalent to (Z) (annealed case) evaluated with the
Hamiltonian of Eq. (2.1) but averaged over the distri-
bution of Eq. (2.2a). The more complex situation is the
quenched average which requires, e.g., the average of the
free energy.

One of the standard approaches for random systems is
to proceed through the evaluation of the quenched free
energy using the replica trick [1]

zZm") —1
n2z) = tim £ 71
n— oo n
which requires the evaluation of (Z™). The importance
of these moments can be realized through the following
expansion:

(InZ) =

Z)+Z

Such an expansion makes sense if and only if the various
cumulants of the partition function, with respect to the
disorder distribution, do not grow too rapidly with n. In
such a case there would not be much qualitative differ-
ence between the quenched and annealed cases. This, in
turn, suggests that, to look into the possible differences,
one can study the various moments of the partition func-
tion. In addition, the moments can be looked upon as
the charateristic function for the probability distribution
of In Z [27]. They are therefore of interest in themselves
[28]. This is the approach we take in this paper. Our
analysis is not yet enough for the analytic continuation
in n to the 0 < n < 1 regime as one would need for
the free energy. This is not a deterrence since impor-
tant information can be gathered even from the integral
moments.

Instead of evaluating the quenched free energy, we sys-
tematically study the behavior of (Z), the second and
the third cumulants. The first moment describes the be-
havior of an annealed system while the higher cumulants
would show the nature of fluctuations. For each case, we
do the averaging exactly before the configuration sum (or
“path integrals”) to define an effective Hamiltonian for
that particular cumulant. This “pure” effective Hamil-
tonian is then treated by perturbative renormalization.
The effect of disorder is felt through the generation of
new terms in the effective Hamiltonian. The RG anal-
ysis helps in examining the flow of these terms as the
length scale is increased, thereby showing the marginal

H[2/(2) - 1]7).
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relevance or irrelevance of the disorder.

In Sec. III, (Z) is discussed, while (Z2) and (Z3) are
presented in Secs. IV and V. Though the derivation of
effective Hamiltonian precedes perturbative analysis in
Secs. III-V, it is instructive to start with the original
Hamiltonian, do the perturbation analysis, and then do
a term by term disorder averaging. Such a procedure
not only shows how the new terms are generated but
also acts as a cross-check. This is discussed in Appendix
A. Appendix B discusses many of the details needed in
Sec. IV. The random multicritical case is discussed in
Sec. VI. The annealed case of three and four chains is
discussed in Sec. VII. A discussion and summary are
presented in Sec. VIII.

1L (Z)

We show in this section that the annealed case can be
reduced to a pure problem. We add that this reduction
is special for two chains. Had we started with more than
two chains, say three or four, with the same random pair-
wise interaction as in Eq. (2.1), the annealed case would
be completely different from the corresponding pure case
and we would have a much richer structure. A particular
case is discussed in Sec. VII.

The partition function, in the continuum approach,
for a system of two chains, given by the Hamiltonian
of Eq. (2.1), is

Z = /Dn Dry exp(—H),

where f DryDr, stands for the sum over all configura-
tions of the two chains. A straightforward averaging of
Z using the probability distribution of Eq. (2.2a) defines
an effective Hamiltonian H.g such that

3485

)2 +vo /ON dz V(ria(2))

1 N 2 Or;(2)
Heg = 5/0 dz ;( 5

2 N

_%A / dz V(r1a(2)). (3.2)
2 Jo

It appears from the above expression of the effective
Hamiltonian that an attraction is generated between the
two chains. We find it instructive to follow another ap-
proach of perturbation expansion of the interaction term
starting with the original Hamiltonian (2.1). This helps
us in visualizing the origin of the disorder-induced at-
traction. This is done in Appendix A.

Now, since any short-range potential under renormal-
ization maps onto a §-function potential, we can take the
“minimal” effective Hamiltonian for (Z) as

2

’Hz=%/0Nd2 <8raliz)> +(8r62£z)>2

+ ‘/(;N dz §(r12(2)),

(3.3)

where 7o is the reduced coupling constant which takes
care of the attraction described earlier. We believe that
the large-length-scale properties as described by Eq. (3.3)
are the same as those of Eq. (3.2). If necessary, we can
restrict the strength of the disorder so that ¥y, which
represents the effective coupling between the two chains,
is positive (i.e., repulsive interaction). Now the problem
reduces to a relatively simple situation where the two
chains interact with a pure §-function interaction with a
reduced coupling constant @. The solution of this pure
problem is known and is used below [17,12].

For the sake of completeness we quote the relevant re-
(Z) = /Dn Dr; exp(—Hes), (3.1) sults from from Ref. [17]. The perturbation series for the
connected part of the annealed partition function (Z), to
and it is given by all orders in g is
J
= - n 1_)6! ﬂ€’ Fn(el)
(Z)e = NV1o [ 1+ nz—:l (-1) (47T)nd/2N T2 +ne) |’ (3.4)

where V is the d-dimensional transverse volume and I'( )
is the standard gamma function. The exact 3 function for
the renormalized coupling constant u (with ug = G L3¢
as the bare dimensionless coupling constant) is
du
B(u) = L=

u

oL 47re’) )

Note here that 2¢’ = (2 — d) replaces € of Ref. [17] to
avoid later conflict of notation.

The flow diagram for the dimensionless coupling con-
stant u is shown in Fig. 1. The fact that for d < 2 any
small attractive interaction is able to form a bound state
is reflected by the flow to the nonperturbative regime for
any negative u. The repulsive or the positive u region

= 2¢'u (1 - (3.5)

f

is dominated by the stable fixed point u* (= 47€’). For
d > 2 there exists a nontrivial unstable fixed point u = u*
which seperates the bound and the unbound states for
the two polymers. In short, the unstable fixed point rep-
resents the critical point for the binding-unbinding tran-
sition. The exponents are known and can be found in

a<2 d=2 da>2
o Vol o U 0
FIG. 1. Flow diagrams for coupling constant u in different

dimensions. u* (= 4we’) represents the nontrivial fixed point.
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Ref. [29]. For example, for 1 < d < 4, the length scale
exponent is 1/| € | [29].

IV. (Z2)

The evaluation of (Z?2) closely parallels that of the pre-
ceding section. However, unlike the (Z) case, new terms
are generated here in the effective Hamiltonian. An RG
analysis is done to get a detailed account of the effects of
these new terms.

A. Effective Hamiltonian

The averaging for (Z2) with the Hamiltonian in
Eq. (2.1) needs completion of the perfect square asso-
ciated with b(z). As in the replica analysis [1] where one
needs n replicas (“copies”) of the original system in eval-
uating (Z™), we require four chains for (Z2), a pair {3,4}
as areplica of the original pair of chains {1,2}. Therefore,
we write, restricting ourselves to §-function potentials,

4
(Z%) = /HDri exp(—Haz,2), (4.1a)
i=1
where
Hz,z =H0+H1+H2, (41b)
with
2
1NV & for(2)
HO = §A dzlz:; (T) (4.1C)
denoting the four-chain free part and
N
H, = 5 / dz [5(r12(2)) + 6(rsa(2))] (4.1d)
0
and
N
Hy = —7 / dz 6(r12(2)) 6(rsa(2)) (4.1¢)
0

representing the interactions among the chains, with 7o =
v2A.

In Eq. (4.1b), H; denotes the repulsive interaction be-
tween the chains of a particular pair (“intrareplica,” {12}
and {34}, no cross coupling) at the same chain length and
is identical to the interaction term used for (Z) as dis-
cussed in Sec. III and Appendix A. The other term H,
couples the two pairs of chains {12} and {34} (“inter-
replica” term) and is the crucial term for our analysis.
Even though this is a four-chain interaction, it is distinct
from the multicritical-type interaction of Eq. (2.3). It
cannot be interpreted directly as a conventional interac-
tion between the two pairs. Rather, there is a lowering
of “energy” of the system if the partners of each pair
{12} and {34} meet simultaneously at the same chain
length but not necessarily at the same point in space.
This can also be interpreted as a special correlation so
that an encounter of {12} at a chain length z favors an
encounter for {34} right at the same length 2. A ten-
dency to achieve this kind of configurations leads to all
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the nontrivial effects of the disorder.

The coupling constant of Hz, 7o in Eq. (4.1e), appears
to be similar to that of the attractive interaction which
is present in H;, Eqgs. (4.1d) and (3.2), but they require
separate treatments in the RG analysis (see below). As
discussed in Appendix A, the term proportional to v2A in
Up is reduced by a cutoff volume factor 2 needed to define
the 62 term properly. Because of this reduction v3A/Q
differs from 7y in dimensionality and matches properly
with vg, the coupling constant of the starting § function
interaction of the two chains.

The standard dimensional analysis for dimensionless
Hamiltonian shows that [ve] = L¢~2,[A] = L?, and hence
[v3A] = L2372 where L has the dimension of length.
Therefore, the upper critical dimension for 7y is d = 1
which also appears as a special dimension through the
divergences in the € (= 1 — d) expansion to be discussed
below. From this simple dimensional analysis it also fol-
lows that the coupling in H, differs from that of Hy, as
already mentioned. The special dimensionality d = 1
which is associated with H; is more important in the
context of fluctuations in the partition function. In the
absence of this term there is no special effect of disor-
der, which, in turn, also means that the quenched and
annealed free energies would become equal.

B. Perturbation series

To study the effect of H;, we develop a perturbation
series for (Z2) in 79. The divergences that appear are
absorbed by renormalization through an € expansion. We
show that this renormalization can be carried out exactly
to all orders. For simplicity, this is done first for the
Up = 0 case. We then show that these divergences at
d = 1, arising only due to H,, remain unchanged even
if we include H,, i.e., when ¥y # 0. The B function
evaluated exactly to all orders in perturbation series and
other essential features are identical for both 79 = 0 and
U # 0 cases.

1. 1—70—-_-0

Let us comnsider first, for simplicity, the case when
99 = 0. This means that there is no mutual two-
chain interaction. We consider only the connected part
(Z%), = (Z?) — (Z)?, the second cumulant of the par-
tition function. As in Sec. III, the calculation can be
done in the real (chain) space. But, at this point, we
prefer the Laplace space (Laplace transform with respect
to the chain length) because it is advantageous for later
considerations especially with ¢y # 0. We define

oo
Z :/ dN e~*N(Z?%),, (4.2)
0
the Laplace transform of (Z?2)., with respect to the chain-
length NV, the Laplace conjugate variable being s.

The loops in the perturbation expansion are shown in
Fig. 2(a) up to third order in the interaction. The indi-
vidual pairs of chains are represented by thick lines. The
horizontal wiggly lines in these diagrams stand for 7.
Such a representation is possible because the § function
in Hy, Eq. (4.1e), forces the members of a pair to have
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| | H (a)
2 3
) o (r;z’)
(r?z)
(©) (d)

FIG. 2. (a) The only contributing diagrams in (Z?) |5,=0
up to third order. Omnly ladder diagrams occur. A thick line
corresponds to a pair of chains. A wiggly line stands for an
7o factor in the evaluation of the diagrams. (b) A typical
diagram for (Z?) |so%0. The dots on the thick lines represent
intrapair interactions (¥o). (c) The dressed propagator with
two chains tied at only one end. The dashed lines represent
the mutual §-function-type interaction with coupling constant

To. (d) The dressed propagator with two chains tied at both
(r,2) and (¢, 2').

(b)

the same r, z coordinates. Each chain is described by the
free distribution (“propagator”) G(ry —r; | z5 — 2z;) =
[2m(z5 — 2)]"¥? exp[—(rs — 15)%/2(25 — 2;)] with end
points (r¢, zf) and (r;,2;). Two chains are therefore de-
scribed by

G(r | 2) = (4n2)~%2 G(r | 2/2). (4.3)

This G? is the propagator for the thick lines. At each
wiggly line, connecting four chains (all four having the
same chain length z), there are two integrations over the
spatial coordinates of the two separate pairs of chains
(thick lines). The loops formed out of the wiggly lines
are only responsible for the divergences at d = 1.

In order to trace the algebraic origin of the singularity,
note that, by the very nature of the interaction, the spa-
tial integrations associated with the two thick lines are
independent of each other. Each section of the thick lines,
with z;, 22 as the end points, in a loop formed with the
wiggly lines, contributes (21 — 22) %2 from the identity
in Eq. (4.3). Since the interaction demands the same z
for the two thick lines, the z integrals involve (z; — z3) ™9
type factors whose Laplace transform would contribute
I'(1 — d) with pole at d = 1. The two independent spa-
tial coordinates, which are left out after the successive
use of the normalization [dr G(r | z) = 1, lead to a
V2 factor for each diagram. The convolution nature of
the z integrals, thanks to the time ordering, leads to a
simple product of the individual Laplace transforms of
the integrands, resulting in a geometric series for Z. The
details of the evaluation of a few diagrams are given in
Appendix A.

Defining the dimensionless coupling constant g
through an arbitrary length scale L as ro = 7oL2¢(4m) ™9,
e = 1 — d, we write the series for Z to all orders in ¢ as

Z |go=0= (4m)? V2 572 [ 72
X (ro + Z rgtl (sL?)™™e F"(e)) . (4.4)
n=1

It is clear from the above expression that there is a di-

vergence at d = 1 at each order (> 1). This is tackled by
renormalization below.

2. o £0

In the above analysis, we have taken 9o = 0. We now
include 7y and show that the singularity structure around
d =1, as in Eq. (4.4), remains unaffected.

In this case there are both intrapair and interpair in-
teractions. The intrapair interactions, i.e., the mutual
short-range §-function interactions among the members
of the pairs, are represented by dots on the thick lines.
The basic idea of the procedure adopted is to show that
the dots can be absorbed by dressing the “propagators.”
The original propagators (thick lines of the §p = 0 case)
G? are modified by the dots, but not trivially. The
“dressing” factor depends on whether the chains are open
or tied at the ends. One therefore needs two types of
dressed propagators, G s for the thick lines in the loops
and Go for the same in the outer legs not involved in
the loops. [See Figs. 2(c) and (d).] Since these involve
only two-chain interactions, the singularities are at d = 2
of the type I'(1 — d/2) as in Eq. (3.4). These dressed
propagators are to be used, as appropriate, in the skele-
ton diagrams of the %o = 0 case without the dots [see
Fig. 2(a)]. We just quote the forms of these propagators
below—the details can be found in Appendix B.

For the one in which the two participating members
of a thick line are tied together at both the ends [(0,0)
and (r, z)] of the line, the form of the dressed propagator
with n meetings (dots) is [Fig. 2(d)]

I'((n+ 1)¢)
xz D -1G(r | 2/2).

There is translational invariance in both r and z. With
¢ = (2 — d)/2, this form surely reduces to Eq. (4.3) for
n = 0. Similarly, for the other type in which the two
members of a thick line are tied together only at one of
the ends, integrations for the open end coordinates need
to be done. The resulting dressed propagator for chains
of length 2z with n intermediate dots [Fig. 2(c)] has the
following form:

G (r | 2) = (=B0)" (dm)~(m+14/2

(45)

() _ _ =27 Bl(e)]"
GO (Z) - F(l +n€')(47r)"d/2.

(4.6)

For n = 0, G(O")(z) = 1, as it should be, by the normal-
ization of the distribution function G(r | z). Also Gg') (2)
has no space dependence.

In a diagram of a particular order in g, the thick lines
can have arbitrary order m in ¥y (i.e., arbitrary number
of dots). All such diagrams differing only in orders of
T are combined together by summing over n. The full
dressed propagators are

Cu(rl2) =Y GPr|2), Go2) =Y G (2).

(4.7)

Unlike the 7y = 0 situation, these two propagators re-
place the inner and the outer thick lines, respectively.
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The subsequent procedure is almost similar to the pre-
vious case, including the origin of the V? factor and the
use of the convolution theorem in the Laplace space. The
series for Z is given by

Z |go 0= V*Go(s)7o [1 + i [fogM(S)]"} Go(s), (4.8)

n=1

|

Z |gor0= (4m)V?sT2L7* S0 (s) [To + gL T [Sm ()] | So(s),

n=1

where

B [[(n1 + na)e’ +1]

(=to)™*™  (4.10)

and

_ I‘[(nl + ’nz)G’ +1- d]
Sm(s) = % I'((n1 + 1)€)T((n2 + 1)€')

(—ig)™ ",

(4.11)

Details can be found in Appendix B. The reason it is
written in the above form is that Sg and Sy start with 1
for ny = ny = 0, to agree with Eq. (4.4). It follows that
the leading divergences at d = 1 in each order of Eq. (4.9)
come from the n; = ny = --- = 0 term of Egs. (4.10) and
(4.11).

C. Renormalization and new criticality

The divergences at € = 0 in the series of Eq. (4.9)
can be absorbed by the standard renormalization proce-
dure [30]. In general, a renormalization through minimal
subtraction would require absorption of the poles in €
through

ro =r(1 4+ air 4+ azr? +---),
with an, = 37,
pling constant. In such a scheme, a, ,(p # ) terms are
required to take care of the subleading divergences.

The formal similarity of the leading-pole structure of
Eqgs. (4.4) and (4.9) with that of Eq. (3.4) enables us to
follow Refs. [17,12], yielding a, = (—€)™P. The geometric
series of Egs. (4.9) and (4.4) guarantees that the removal
of the leading poles is sufficient to remove the sublead-
ing ones. The presence of the dots [Fig. 2(b)] through
n1,n2 # 0 in Eq. (4.9) is felt through the changes in the
subleading divergences. This does not pose a problem
and can indeed be checked explicitly. Note that Sps of
Eq. (4.11) has an expansion of the form

(4.12)

anp€ P and 7 as the renormalized cou-

1
SM = E + Ao + ZAPEP' (413)
p=1
Taking a, = (—€)™P, as needed to remove the leading

poles, one can verify explicitly that all the poles are re-

where Go(s) = LG%(z), Gm(s) = LG3.(z) (L be-
ing the Laplace transform with resprect to z), and
Gum(z) = [drGuy(r | z). The “same 2” require-
ment of the § function of Hy combines the propaga-
tors of the thick lines. Hence G% and G%,. The two
outer pairs of legs contribute the two Go(s) factors. In
terms of the dimensionless coupling constant 7o and %o
[= ©o(47)~%/2T'(2€')s™<'], the above expression becomes

(4.9)

[
moved order by order, and the result does not depend on
the explicit values of Ag, 41, etc.

The B function is therefore exact to all orders in per-
turbation series and is given by

i\ _ g Or
pir)=Lgr

There are two fixed points: (i) 7 = 0 and (ii) 7* = —e.
The flows are shown in Fig. 3. The bare coupling con-
stant ro, which originates from vZA, where A, the vari-
ance of the distribution, is strictly positive, requires a
positive . Therefore, the nontrivial fixed point for d < 1
in negative r is unphysical. However, it moves to the
physical domain for d > 1. See Fig. 3(c).
Exactly at d = 1,e = 0, r grows with length L as

= 2(er + 72). (4.14)

-1

r(L) = r(0) [1 + 27(0) In %] , (4.15)
7(0) being the coupling at length Lo. Hence the disorder
is marginally relevant, in agreement with Ref. [24]. For
d > 1, there exists an unstable nontrivial fixed point at
r =| € | which separates two distinct regimes of disor-
der. If we start with a strong enough disorder, on the
right-hand side of the fixed point, it increases with the
length scale, going beyond the perturbative regime. This
is the strong disorder phase. On the other hand, the left-
hand side of the fixed point is the weak disorder regime,
since r flows to zero (the stable fixed point). The unsta-
ble fixed point therefore represents a critical point—an
unexpected phase transition induced by the disorder.
One way of achieving the above-mentioned critical
behavior is to change the strength of the disorder by
controlling the temperature. The “strong disorder”
phase ({InZ) # In(Z)) would correspond to the low-

d< i d=1 d>1
—_————————
o] [e] o r*
(@ (b) tcy
FIG. 3. Flow diagram for r in various dimensions. r~*

(= —¢) represents the nontrivial unstable fixed point. For the
mth-order multicritical case r is to be replaced by rm. The
three figures would be for d < dm, d = dm, and d > dn,
where dr, = 1/(m — 1).
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temperature phase while the “weak disorder” phase
({In Z) = In(Z)) is the high-temperature one. The details
of the critical behavior can be obtained by integrating the
B function,

r=|¢€| (4.16)

T‘(O) L()

For a small starting deviation AT =T —-T. =7(0)— | €|,
there is a length scale L ~ (AT)~'/2l¢l at which r in
Eq. (4.16) diverges. This we can identify as a length
scale £ associated with the critical point with the length
scale exponent

v=(2]e) " (4.17)

The divergence at € = 0 is consistent with the essential
singularity that follows from Eq. (4.15),

l_ﬂ—l_el(gy‘f'

|

& ~ exp[1/(2AT)]. (4.18)

A complete description of the critical point would in-
volve an evaluation of various macroscopic or thermo-
dynamic properties. These would require a replica-type
analysis. It is tempting to believe that the correlation
induced by H, in Eq. (4.1e) in the replica space distin-
guishes the two phases. We wish to come back to such
replica analysis elsewhere.

V. (Z°)

The evaluation of (Z3) leads to a six-chain problem
where, as before, an interaction involving four chains is
generated which is attractive in nature. The effective
Hamiltonian, apart from the free part for six chains and
mutual § function interaction, contains the following at-
tractive terms [see Eq. (4.1b)]:

N
_FOA dz [6(r12(2)) 0(r3a(2)) + 6(r34(2)) 6(rs6(2)) + 6(r12(2)) 6(rse(2))]-

Instead of (Z3), we analyze the third cumulant (Z3). involving only six-chain connected diagrams. Figure 4 shows
such diagrams upto fourth order in 7#y. Contributions of these diagrams can be found out following the rules discussed
in the context of (Z2) in Sec. IV. As an example, we give an explicit evaluation of Fig. 4(c), which is

N z1 22 z3
Fg/ / d21/ de/ dZ3/ dZ4 Gz(l‘lz | 212) Gz(l'llz | le)GZ(l'lzg | 223)G2(l‘l34 I Z34) Gz(l'"34 ! 234).
r,r',r'"} JO 0 0 0

In the above equation r,r’,r” with appropriate subscripts denote the set of d-dimensional coordinates for the three
thick lines and [, (e, e} corresponds to the integrations over all spatial coordinates. As before, each thick line between

two end points (r;, z;) and (r;, 2;) is represented by G?%(rij | z:5) with z;; = 2

the above expression to

— z;. The spatial integrations simplifies

N z z2 z3 _ T2(1—d) (1 =4d/2 N4~5d/2
1"3(47r)"5d/2])3/ dz1/ dzz/ dz3/ dzq zl_zd 223d/2 zs_f = 7"(‘,‘(4#)_‘!"1/2\23 ( ) I( /2) .
0 0 0 0

The series for the Laplace transform of (Z3), is given by

[L(Zs)c] |5o=0= V3(47r)3d/2s_1_3d/zr‘(e') [27‘02(.<>'L2)_2e + 47'03(3L2)—3€F(e) + 6r04(sL2)_4€]_"2(e) + - ]

where, as before, s is the Laplace conjugate to the chain
length N and 7y is the dimensionless coupling constant as
defined before Eq. (4.4). This series requires the standard
renormalization procedure for removal of divergence at
d = 1. Defining the renormalized r via

ro =7(l+ar+ asr? + - 3 (5.3a)
it is found that
ap=(— l/e)p (5.3b)

absorbs the divergence at d = 1.

It is interesting to note that at a particular order there
are diagrams which are similar by a mere permutaiton
of the interaction lines, i.e., by a different time order-
ing. For example, Fig. 4(b) shows four diagrams related
by permutations, in the third order of the perturbation
series. All of these have the same value and hence the

I'(5 - 5d/2)
(5.1)

(5.2)

factor of 4 in the r3 term in Eq. (5.2). These permuta-
tion factors collaborate with powers of r¢ in such a way
that the a, are just the same as those for the (Z?) case.
There are also diagrams in the third and higher orders [a
few shown in Fig. 4(d)] which correspond to subleading
divergences, the removal of which will be automatic by
their corresponding higher orders.

Therefore we see that the 3 function for » has the iden-
tical form to that in Eq. (4.14) for (Z2). and all the fea-
tures follow identically. This shows that the phase tran-
sition for (Z3). has the same nature as for the (Z?2) case.
To be more explicit, there exists a transition tempera-
ture for d > 1 which separates the weak disorder and
strong disorder phase for every moment. In the high-
temperature phase (Z3) ~ (Z)3 and for T < T, i.e., in
the fluctuation dominated phase, (Z3) differs from (Z)3.
This transition temperature is the same for (Z3) and
(Z?).
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NN N\

N N (=)

N N\
A N (b)
NAV N\
NN aY
N\

N\ N MY

N\

) (d)

FIG. 4. The (a) second-, (b) third-, and (c) fourth-order

(in 7o) connected diagrams for (Z%) |s,—0. In fourth order,
there are a few other similar diagrams which contribute to
the leading divergence. For connectedness, the series has to
start at order 2. (d) Diagrams which contribute to subleading
divergences in the third and fourth order in 7.

It is now a trivial exercise to extend this for higher
moments [31]. The effective Hamiltonian, apart from the
free part for 2n chains and mutual §-function interaction,
involves the following attractive interaction:

N
~FoZA dZ (5(1‘21;_1 2,(2’)) 5(!‘2]'_.1 2j(z)).

i<j

1
Hm,m 5
=1
m—1 2m—1
—"_'m/ dz H 5(rp p+1(2))
p=1 q=m+1
o
where 7,, = vZ,A and the two sets are represented by
p’s and ¢’s. The special feature is the last term that

involves the peculiar m-chain—m-chain interaction. This
generalizes H, of the two-chain case of Egs. (4.1b) and
(4.1e). The effect of disorder, as far as the fluctuations
are concerned, is to introduce a correlation that if m
chains meet at a z, the replica would also like to meet at
that same z.

The upper critical dimension of r,,, follows from the di-
mensional analysis as d,,, = 1/(m—1), which is half of the
upper critical dimension for the pure case [2/(m — 1) for
Upm]. We are not sure whether this systematic reduction
by a factor of 2 has any deeper significance.

For simplicity we choose 7, = 0. The perturbation ex-
pansion in 7,, would involve the same sets of diagrams as
in Fig. 2(a) except that now the propagator for the thick
lines is G™(r | z) = (2n2)~ (™D 2m=d2G(x | z/m).
With this propagator, the full series can be computed.

I 3Gqan(2),

Since no new interaction is generated, the 3 function re-
mains the same [25, 30].

VI. RANDOM MULTICRITICAL CASE

In the preceding sections, attention was focused on the
two-body interaction case. It is known that DP’s with
pure m-body interaction can also be completely solved
[26, 18, 19]. We now investigate the random version of
this multicritical case as given by the Hamiltonian of
Eq. (2.3). As before, we want to evaluate (Z,) and
(Z2%)). The procedure follows the footsteps of the two-
chain problem, therefore details are skipped.

A. (Z,)

To compute (Z,,), we can perform an averaging over
b(z) to obtain, as in Sec. III, an m-chain Hamiltonian
with a pure m-body interaction. The grand universality
known for the pure system indicates that the multicritical
exponents for the binding-unbinding transition will be
similar to those of Ref. [29]. For example, for d > 2/(m —
1), the length scale exponent would be 2/| €], |, where
e, =2—(m—1)d.

B. (22)

A little calculation involving the completion of the
square would convince the reader that the effective
Hamiltonian needed for the second moment would in-
volve 2m chains in sets of m. It is given by

2m—1

g=m++1

]dei":(arl(z) + o, ]V 11 8(rp pra z))+vm/ dz ] 6(rqa+1(2)

(6.1)

I

It is transparent to see the occurrence of divergences at
d = d,,. The whole RG procedure of Sec. IV can be
copied in toto by replacing € by €, = 1 — d(m — 1).
Hence in the multicritical situation we also expect to see
a disorder-induced phase transition. The length scale ex-
ponent v, = (2 | €, |)7!, with an essential singularity
for d = d,,, as in Eq. (4.18).

VII. SYSTEM WITH MORE THAN
TWO CHAINS

Annealed averaging for the system with two chains
with random interaction is simpler and not sufficient to
give enough information about the effects of disorder.
On the other hand, if the above case can be extended
to four chains having two-body interaction among each
other, even the annealed case turns out to be extremely
nontrivial. The Hamiltonian for the four-chain system
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1 (V& (o
2/ dzZ( r(z)) / dz vo[1 + b(z)] Z 5(ri (2 (7.1)
°o= g
where r;; = r;(z) — r;(z), after averaging, using the Gaussian distribution of b(z), gives the following effective
Hamiltonian:
2 2 4
1 [N & for(2) ari(2) (N
Her = 3 [ dzg( il ) +( il ) s | d= 3 Blei(e) -
-—Z’UOA/ ZJ(r”)J rin) —ZUOA/ iz 3 6(ri)6(rm)- (7.2)

i,5,k i#jAkAL

The remarkable feature of the effective Hamiltonian
is that there are two different kinds of attractive in-
teraction, one of which involves three chains with a
multicritical-type interaction [Eq. (2.3)] while the other
one couples four chains together, as in the quenched prob-
lem.

If we take a three-chain system, the corresponding ef-
fective Hamiltonian will involve only the three-chain term
but no four-chain interaction of Eq. (7.2). This term was
absent in the original three-chain Hamiltonian. There
is now the possibility of a disorder-induced multicritical
behavior, though of pure type [26, 18].

The four-chain attractive interaction is marginal at d =
1 and so is the three-chain interaction. The presence of
these two marginal operators is, in general, expected to
complicate the renormalization procedure through their
interdependence, but here that does not happen.

The perturbation expansion with the three-body and
the four-body interactions leads to three different kinds
of diagrams. See Fig. 5. The series corresponding to
the pure three-body interaction is already solved [26, 18].
The series in the Laplace space involving four-body in-
teractions [see Figs. 5(a)—5(c)], which contributes to the
leading divergence, is identical to the series for {Z2). in
Eq. (4.4) [(Fig. 2(a)]. The diagrams with mixed three-
body and four-body interactions are shown in Figs. 5(d)
and 5(e). In the final series, up to the order shown in
Fig. 5, the four-body and three-body contributions get
separated into two factors. This shows that the result-
ing renormalization of the two couplings are independent
of each other. Because of the four-body interaction, we
expect a disorder-induced criticality as for the two-chain
quenched case, but here this happens for a real four-chain
system—no replica is involved. The details and the phase
diagram will be published elsewhere.

VIII. SUMMARY AND DISCUSSION

We have proposed a random-interaction model for two
directed polymers and studied the first three cumulants
of the partition function. We have shown that in the
annealed case, described by (Z), there can be a disorder-
induced binding-unbinding transition, very similar to a
pure problem. The exponents are also identical to the
pure case. We also pointed out certain peculiarities of
the annealed problem involving three or four chains. The
quenched problem is different, as reflected through the

[
marginal relevance of the disorder. For d > 1 there ex-
ists a critical point that demarcates a disorder-dominated
phase and a pure-type phase. In the strong disorder
phase, there seems to have an extra correlation in the
replica space which is absent in the other phase. The
length scale exponent for the critical point is found to be
(2] €)1, where e = 1 — d. It has an exponential diver-
gence at d = 1. Similar results were obtained for (Z3). In
the replica approach, one needs (Z™) with n — 0, which
does not require interactions other than those which are
present in (Z2) and (Z3). Therefore the upper critical
dimension will remain the same, namely d = 1.

There are still many open problems, such as, for exam-
ple, a replica analysis for this system. This requires an
explicit expression for (Z™), correct at least for small n.
Such an analysis would provide vital information regard-
ing the disorder-induced critical point, including possi-
ble replica symmetry breaking. Is there any other length
scale exponent for this new crtical point, apart from the
one we have calculated? What about other exponents?

A 8833
Sl

(f)

1 2 3 4

FIG. 5. Four chain diagrams for the annealed problem
with four chains. The wiggly lines represent 7o-type interac-
tion and a solid horizontal line connecting three-chains is the
three-chain é-function interaction. The first three terms of the
series involving only four chain interactions are shown in (a),
(b), and (c). (d) and (e) Two cases involving both the three-
and four-chain interactions. (f) A possible diagram in second
order with different chain combinations for the interactions.
This contributes in the subleading divergence.
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What, if any, is the upper critical dimension of this crit-
ical point? A thorough numerical study of this system
will surely provide valuable insights.

APPENDIX A: GENERATION OF ATTRACTION:
PERTURBATION ANALYSIS FOR (Z) AND (22)

In this appendix, we show how the attractive terms in
the effective Hamiltonian for (Z) and (Z?) can be gener-
ated perturbatively.

We proceed to the evaluation of the average of the
partition function (Z) by a perturbation expansion using
Eq. (2.1) with the replacement of the short-range poten-
J
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tial by a §-function potential. Formally this leads to the
expression for

Z = /DrlDrgexp(—Ho) (1—H,-+Hi2/2!-+----),

(A1)

where Hy corresponds to the free part of the two chains
and H; represents the interaction part fON dz vo [1 +
b(2)]6(r12(z)). A little manipulation after substituting
the explicit form of H; gives the connected partition func-
tion as

N
Zc = A d21 Vo [1 + b(;ﬁ)]\/{ ,} G(I‘N — I | N —_ Zl) G(l‘]_ — T I Zl)G(l"N — Iy l N - Zl) G(l‘]_ — l"o ] 21)

N 2z1
+/ le / de ’U(z) [1 + b(Zl)][l + b(Zz)]/ G(I'N — I l N — Zl) G(l‘lz | 212) G(l‘z — To | 2’2)
0 0 {r,r'}
XG(r'n — 11 | N — 21)G(r12 | 212)G(r2 — 10 | 22) + - -, (A2)
where G(r | z) = (27rz)(_d/ 2 exp(—r2/2z) is the distribution function for a d-dimensional Gaussian chain of chain
length z and end to end distance vector r, and [, (r'} signifies integrations over all dummy spatial coordinates. The
convention is to use r and r’ for the two chains and z;; = z; — z;. The factorials in the denominators of the terms of
Eq. (A1) are absorbed by introducing “time” (z) ordering, which restricts z;+; < z;, in the integrals. Diagrams up to
second order corresponding to the series in Eq. (A2) are shown in Fig. 6. The familiar normalization [drG(r | z) =1
and the integrations over the spatial end coordinates lead to a simplification for Z.. The explicit form of Z. up to

two loop term is given by

Ze=v [ derunft + o) - [ [ [ e )+ e

N 2z 22
XGz(l‘lz I 212) +/ dZ]_/ de/ ng/ ’Ug[l + b(zl)][l + b(Zz)}
0 0 0 {r}

X[1+ b(23)]G?(r12 | 212)G?(r2s | z23) -+,

where V is the transverse volume. The actual meaningful
quantity (Z.) is computed from Eq. (A3) after averaging
it with the distribution P(b) of Eq. (2.2a). This Gaus-
sian distribution with zero mean ensures that any term
involving an odd number of b(z)’s should vanish after av-
eraging. Therefore, the contribution from the first-order
term voNV is only from the pure part. In the one-loop
level of Eq. (A3), there are two surviving terms after dis-
order averaging. One is the pure term, which does not
require any averaging, and its contribution to (Z.) is

—v2V(4m) "2 M]\ﬂ—dﬂ_

T(3—d/2) (A4)

.....

FIG. 6. Diagrams for (Z) up to second order in vo and
vob(z). The wavy and dotted lines represent interactions with
coupling constants vob(2z) and vo, respectively.

(A3)
1 2 3 e
) )
NN
2 q (b)
N\ A
N\
1 N\ NAA
3 5
FIG. 7. (a) Diagrams involving only wob(z) for (Z?). (b)

Diagrams of (a) after disorder averaging (see the caption of
Fig 2). (a2), With an odd number of wavy lines, vanishes
after DA. Different pairings lead to two possiblities (b2) and
(b3) from (a3). Similarly for (a4), there are two diagrams (b4)
and (b5) after DA. Diagrams (b2) and (b4) are not considered
for the (Z?) |5,=0 case.



48 DIRECTED POLYMERS WITH RANDOM INTERACTION: AN...

The other nonvanishing part which contains an even
number of disorder interaction is

N z1
—’Ug/ d21/ dZ2 /dl‘l dl‘z b(zl) b(ZZ) G2(l‘12 | Zlg).
0 0

After averaging, the two points z; and z, along the chain
merge together giving rise to a term
N
—/ le ’Ug A52(r1 ad 1'2) dl'l dl‘z, (A5)
()}
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where we used the fact that G(r | 0) = §(r). Because
of this merging of the two points along the chain, this
term contributes to the first-order term but with a nega-
tive sign, which shows the presence of a newly generated
attraction. In other words, a second-order term for a
particular realization (before averaging) looks like an at-
tractive first-order term after disorder averaging (DA).

Proceeding in the same fashion we can evaluate the
two-loop term of Eq. (A3). In the two-loop part, the
nonvanishing contributions are

N z1 z2
(i) ’Ug/ d21/ de/ ng/ Gz(l'lz ] le)Gz(l‘23 l 223).
0 0 0 {r}

This term, involving only pure-type interaction, after integration over spatial coordinates, gives

N z z2 2(1 —
va(47r)_d/0 dzy /0 dz2/ dzz (21 — 22) Y% (25 — 23) 42 = va(47r)”du1———d/—22N3'd/2.
0

T(4=d/2) (A6)

N z1 z2
(i) 3 / d / dzy / dzs / b(21)b(z2) G*(r13 | 712)G2(r2 | 723).
0 0 0 {r}

As in the earlier case this reduces to a one-loop term after averaging as

N z1 z2
ng (47r)_d/2/ dzI/ dzo / ng/ 52(1'12) (22 —-z3)'d/2.
(t] 0 0 {r}

(iii) The third nonvanishing contribution is from

N T z2
vg/ dzl/ dzz/ dz3 A }b(Zz) b(z3) G?(r12 | z12) G?(ras | 223).
0 0 0 r

This term after averaging becomes

N z1
vg A (47f)_d/2/ dzl/ dzz 82(rzs) (21— 22) /2.
0 0 {r}
(A9)

There is one more term involving b(z;)b(z3) which van-
ishes after averaging because of the specific time ordering
which rules out the merging of z; and z3. It can be easily
be checked that this merging of two “random interaction”
lines (wavy lines) into one single pure line and the sub-
sequent reduction of order occurs at each order (> 1)
involving consecutive pairs of even number of “random”
lines. Thus an attraction is generated at each order very
systematically. The coupling constant of this term is pro-
portional to vZA. In some of the above expressions [(A5),

(A7), and (A9)] the presence of the §2 term needs spe-
f

(A7)

(A8)

[

cial attention since it is ill defined even in the sense of
the theory of distribution [32]. We can avoid this prob-
lem by taking a spread out § function and then taking
the limit at the end. This would change the coupling to
v2A/Q, where Q is the arbitrary “spread out” or cutoff
volume. Since one gets back a single § function, it can
be associated with the pure term, thereby changing the
problem to a pure one with a reduced coupling constant
Do = vo — v2A/Q. See Eq. (3.2). Another way to tackle
this difficulty is to start with a short-range potential V (r)
and appeal to RG arguments as done in Sec. III.

Now we discuss (Z2). A few diagrams for (Z2) with
o = 0 are shown in Fig. 7(a). In first order, the
only diagram which has nonzero contribution to (Z2),
is Fig. 7(a)1. This contribution after disorder averaging
is V202AN. As was mentioned in the text this V2 has
come from the independent spatial integrals. Proceeding
in the similar fashion, we write

N z1 N z]
Fig. 7(a)3 = vé/ dzl/ dza b(z1)b(22) / G?(r12 | zlz)/ dz'l/ dz;b(z{)b(z'z)/ G?(r'12 | 215).
0 0 {r} 0 0 {rr'}

In disorder averaging, the only relevant contribution comes from the pairing of b(z1),b(z]) and b(22),b(25). The other
possibility in which b(z;),b(22) and b(z2}),b(25) are paired up [Fig. 7(b)2] is not considered here since this generates
To-type terms which are not to be included for the 5o = 0 case. After appropriate disorder averaging the above
expression becomes
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va A2V247iT (€) s~ (2+9), (A10)

where e =1 —d.
To make the evaluation, after DA, easier we follow
a different convention for the diagrams, Figs. 7(b) and
2(a). The thick line represents the two members of a pair
jointly and is represented by G2(ry —r2 | 21 — 22) for the
J

N 21 22
(’U%A)B/ dzl/ dz2/ ng/ Gz(l'lz I 212)G2(I‘23 ! Zzg)Gz(rllg | le)Gz(r’zj I Zzg).
1] 0 0 {r, '}

In the Laplace space this becomes

(W2 A)3V2D2 (€) (4m) ~2ds™ (2426), (A12)
The diagrams having an odd number of wiggly lines triv-
ially vanishes after DA. This can be generalized to arbi-
trary orders since only ladder-type diagrams are involved.
Equation (4.4) would follow by substitution 7o = vZA.

J
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ends ry and ry at which the two chains are tied at lengths
21 and z;. For example, the diagram which corresponds
to the last expression [Eq. (A10)] is given by Fig. 7(b)3,
which is also Fig. 2(a)2. (Note that 7o = vZA.)

The next diagram which is important in the next
higher order is given in Fig. 7(a)4, the contribution of
which can equivalently be calculated from Fig. 7(b)5 or
2(a)3 as

(A11)

APPENDIX B:
DRESSED PROPAGATORS AND (Z?)

We first show the two different dressed propagators.
The one for which both the chains, tied at the ends (r, z)
and (r',2'), meet each other n times at (r1,21), (r2, 22),
-+ (rn,2,) [Fig. 2(d)] is given by

z z1 Zn-—1
G‘ﬁ)(r——rﬂz—-z'):ﬁ,’)‘/ / dzl/ dzz---/ dz,G3(r — 11 | 2 — 21)
{r} J 2! z! z!

XGz(I']_z l Zlg) R Gz(l‘n_ln | Zn_.ln)Gz(l‘n — l‘l | Zn — ZI).

Use of the identity G(r | 2) = (472)~%/2G(r | 2/2) and the Markovian property

/dl‘gG(l‘l — TI'p | Zl)G(rz — I3 | 22) = G(I‘l — I3 | z1 + Zz)

leads to the following expression for ég{;) (r—7"|z—-2"):

C—v’f&)(r—r' | z = 2') = o54n "2GQ(x — ' | (2 —z')/2)/ dzl/ dz2~--/

—d/2

in—ln(zn - Z/)_d/z'

So we need the following integral:

' 2!

A change of variable

Zi =2z — 2’

“and use of the convolution theorem in the Laplace space

straightaway yields
s~ € (n+1)pn+1 (6’)

b

where s is the Laplace conjugate to the chain length

(more precisely to Z = z — 2’). Converting this to in-

verse Laplace space and combining all other factors, the

final form of such a propagator becomes

G’g{;) (r]2) = (—170)"(47r)_("+1)d/2z("+1)€,—1

r‘n+1(el)

XSt ey O 1772

(B1)

Zn—1

dzn(z — zl)_"l/zzl_zd/2 e

1]

z Z1 Zn—1
/ dz(z — zl)_d/z/ dzy(z1 — z3) "2 / dzn(Zn_1 — 2n) Y% (20 — 2') "2,

[
Following the same track, the other dressed propagator,
for which the two member chains are tied only at one
end say (r,z) other than n meetings, has the form [see
Fig. 2(c)]
n _ _ , I"n e/
G8(2) = (—oo)(am) /2 s

This propagator is independent of any space coordinate
because of the spatial integration over the open end co-
ordinates.

To take care of arbitrary number of meetings we sum
over n. Hence the final dressed propagators are

(B2)

oo

Gol(2) = >~ G&(2),
n=0
Gu(r—r'|z2-2)= Z@g\'})(r—r' z—2).

n=0
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Therefore the series for (Z2), can be written as

N
<Z2>c = Fof dZ]_GZO(N — 21) Gzo(zl)
0

(B3)

N z1
+F§/O dZ]_[; de/{ I}GZO(N - 21) GM(I'12 I 212) GM(I"lz | 2’12) G20(22) + .- (B4)

In fact, it is possible to write the whole series to all orders in perturbation. Completing the integrations over the

spatial coordinates we get

N N z1
(2%, = v%] dz21G%5 (N — 21)G% (21) + f§v2/ dz1/ dz,G%5 (N — 1)
0 0 (1]

N z1 z2
xG3,(212)G% (22) + ngz/ dzl/ ng/ dzs G5 (N — z;)
0 0 0

X Gir(212) Gy (223) G5 (23).

(B5)

Here Gpr(2) is obtained from Gs(r | z) after integration over the spatial coordinate. We use the convolution theorem
for Laplace transforms which leads to the following expression for Z the Laplace transform of (Z?). [Eq. (4.2)]:

Z |so 0= V?[F0G%(s) + T3G0(5)GM(5)Go(s) + TaGo(s)Gi(s)Go(s) + - -] (B6)

where Z = [ e *N(Z2), G, = [;” e *NGZ(z), with p being O or M. The Laplace transforms Go(s) and Gu(s) are

given by

Gols) = 3 Um)mtmt 2ags e e ()T (m 4 o)’ 41)
R L(1 + n1€)T(1 + nge’) stri+na)(1-d/2)+1

ny,n2

and

(B7)

gM(s) _ Z (471.)—('nl+n2+2)d/2,6611+n2]:\n1+n2(el)r((nl +ln2)€/+e).
L((1 + n1)€)T((1 + na)e’) s(ratnz)e+e

ni,n2

(B8)

Substituting these expressions in Eq. (B6), we get back Eq. (4.9) for Z |g,%0 in the Laplace space. The results for
Do = 0 can be obtained from the first term of each sum, i.e., for n; = ny = 0.

* Electronic address: sutapa%iopb@shakti.ernet.in
t Electronic address: sb%iopb@shakti.ernet.in

[1] M. Mezard, G. Parisi, and M. Virasoro, Spin Glass The-
ory and Beyond (World Scientific, Singapore, 1987).

[2] M. Kardar and D. R. Nelson, Phys. Rev. Lett. 55, 1157
(1985).

[3] M. Kardar, in New Trends in Magnetism, edited by M.
D. Coutinho-Filho and S. M. Rezende (World Scientific,
Singapore, 1990); D. S. Fisher and D. A. Huse, Phys.
Rev. B 43, 10728 (1991).

[4] B. Derrida, Physica A 163, 71 (1990).

[5] G. Parisi, J. Phys. (Paris) 51, 1595 (1990); M. Mézard,
ibid. 51, 1831 (1990).

[6] J. M. Kim, M. A. Moore, and A. J. Bray, Phys. Rev. A
44, 2345 (1991); 41, R4782 (1991).

[7] S. M. Bhattacharjee and S. Mukherji, Phys. Rev. Lett.
70, 49 (1993).

[8] D. R. Nelson and H. S. Seung, Phys. Rev. B 39, 9153
(1989); D. R. Nelson, Phys. Rev. Lett. 60, 1973 (1988).

[9] See, e.g., M. E. Fisher, J. Stat. Phys. 34, 667 (1984), and
references therein.

[10] See, e.g., V. Privinan and N. M. Svrakic, Directed Modles
of Polymers, Interfaces and Clusters: Scaling and Finite
Size Properties, edited by H. Anaki et al., Springer Lec-
ture Notes in Physics Vol. 338 (Springer, Berlin, 1989).

[11] G. Forgacs, L. M. Luck, Th. M. Nieuwenhuizen, and H.
Orland, Phys. Rev. Lett. 57, 2184 (1986); J. Stat. Phys.
51, 29 (1988).

[12] S. M. Bhattacharjee and J. J. Rajasekaran, J. Phys. A
24, L1217 (1991); Phys. Rev. A 44, 6202 (1991).

[13] See, e.g., D. R. Nelson, Physica A 177, 220 (1991); T. C.
Halsey and W. Toor, Phys. Rev. Lett. 65, 2820 (1990).

[14] J. F. Nagle, J. Chem. Phys. 58, 252 (1973); T. Izuyama
and Y. Akutsu, J. Phys. Soc. Jpn. 51, 50 (1982).

[15] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett.
56, 889 (1986); M. Kardar and Y. C. Zhang, ibid. 58,
2087 (1987).

[16] P.-M. Binder et al., J. Phys. A 23, L975 (1990); D. P. Fos-
ter, ibid. 23, L1135 (1990); D. P. Foster and J. M. Yeo-
mans, Physica A 177, 443 (1991), and references therein;
F. Igloi, Phys. Rev. A 43, 3194 (1991).

[17] J. J. Rajasekaran and S. M. Bhattacharjee, J. Phys. A
24, L371 (1991).

[18] S. M. Bhattacharjee, Physica A 186, 183 (1992).

[19] S. M. Bhattacharjee and J. J. Rajasekaran, Phys. Rev.
A 46, R703 (1992).

[20] E. I. Shaknovitch and A. M. Gutin, J. Phys. A 22, 1647
(1989); G. Iori et al., J. Phys. A 24, 5349 (1991); Y.
Kantor and M. Kardar, Europhys. Lett. 14, 421 (1991).

[21] See, e.g., P. Le Doussal and J. Machta, J. Stat. Phys. 64,



3496 SUTAPA MUKHERJI AND SOMENDRA M. BHATTACHARIJEE 48

541 (1991); B. K. Chakrabarti, in Polymer Physics: 25
Years of the Edwards Model, edited by S. M. Bhattachar-
jee (World Scientific, Singapore, 1992).

[22] T. Natterman, M. Feigelman, and I. Lyuksyutov, Z.
Phys. B 84, 353 (1991).

[23] B. Derrida, R. B. Griffiths, and P. G. Higgs, Europhys.
Lett. 18, 361 (1992).

[24] B. Derrida, V. Hakim, and L. Vannimenus, J. Stat. Phys.
66, 1189 (1992).

[25] S. F. Edwards, Proc. Phys. Soc. 85, 613 (1965); see, e.g.,
K. F. Freed, Renormalization Group Theory of Macro-
molecules (Wiley, New York, 1987).

[26] J. J. Rajasekaran, Ph. D. thesis, 1991 (unpublished); J.
J. Rajasekaran, B. Duplantier, and S. M. Bhattacharjee

(unpublished).

[27] J. Machta and T. R. Kirkpatrick, Phys. Rev. A 41, 5345
(1990).

(28] T. C. Lubensky, Phys. Rev. A 30, 2657 (1984).

[29] R. Lipowsky, Europhys. Lett. 15, 703 (1991).

[30] See, e.g., D. J. Amit, Field Theory, the Renomalization
Group, and Critical Phenomena, 2nd ed. (World Scien-
tific, Singapore, 1984).

[31] The random energy model, which can also be solved ex-
actly, has a different behavior. The transition temper-
ature there depends on the moment [B. Derrida, Phys.
Rev. B 24, 2613 (1981)].

[32] I. Richards and H. K. Youn, Theory of Distributions
(Cambridge University Press, Cambridge, 1990).



